• Docs >
  • quaterion_models.heads.softmax_head module
Shortcuts

quaterion_models.heads.softmax_head module

class SoftmaxEmbeddingsHead(output_groups: int, output_size_per_group: int, input_embedding_size: int, dropout: float = 0.0, **kwargs)[source]

Bases: EncoderHead

Provides a concatenation of the independent softmax embeddings groups as a head layer

Useful for deriving embedding confidence.

Schema:
         ┌──────────────────┐
         │    Encoder       │
         └──┬───────────┬───┘
            │           │
            │           │
┌───────────┼───────────┼───────────┐
│           │           │           │
│ ┌─────────▼──┐     ┌──▼─────────┐ │
│ │  Linear    │ ... │  Linear    │ │
│ └─────┬──────┘     └─────┬──────┘ │
│       │                  │        │
│ ┌─────┴──────┐     ┌─────┴──────┐ │
│ │  SoftMax   │ ... │  SoftMax   │ │
│ └─────┬──────┘     └─────┬──────┘ │
│       │                  │        │
│  ┌────┴──────────────────┴─────┐  │
│  │       Concatenation         │  │
│  └──────────────┬──────────────┘  │
│                 │                 │
└─────────────────┼─────────────────┘
                  │
                  ▼
get_config_dict() Dict[str, Any][source]

Constructs savable params dict

Returns:

Serializable parameters for __init__ of the Module

transform(input_vectors: Tensor)[source]
Parameters:

input_vectors – shape: (batch_size, …, input_dim)

Returns:

shape (batch_size, …, self.output_size_per_group * self.output_groups)

property output_size: int
training: bool

Qdrant

Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning

Community

Find people dealing with similar problems and get answers to your questions

Join Community