Shortcuts

Source code for quaterion_models.heads.sequential_head

import json
import os
from typing import Any, Dict, Iterator, Union

import torch
import torch.nn as nn

from quaterion_models.heads.encoder_head import EncoderHead


[docs]class SequentialHead(EncoderHead): """A `torch.nn.Sequential`-like head layer that you can freely add any layers. Unlike `torch.nn.Sequential`, it also expects the output size to be passed as a required keyword-only argument. It is required because some loss functions may need this information. Args: args: Any sequence of `torch.nn.Module` instances. See `torch.nn.Sequential` for more info. output_size: Final output dimension from this head. Examples:: head = SequentialHead( nn.Linear(10, 20), nn.ReLU(), nn.Linear(20, 30), output_size=30 ) """ def __init__(self, *args, output_size: int): super().__init__(None) self._sequential = nn.Sequential(*args) self._output_size = output_size @property def output_size(self) -> int: return self._output_size
[docs] def forward(self, input_vectors: torch.Tensor, meta=None) -> torch.Tensor: """Forward pass for this head layer. Just like `torch.nn.Sequential`, it passes the input to the first module, and the output of each module is input to the next. The final output of this head layer is the output from the last module in the sequence. Args: input_vectors: Batch of input vectors. meta: Optional metadata for this batch. Returns: Output from the last module in the sequence. """ return self._sequential.forward(input_vectors)
[docs] def append(self, module: nn.Module) -> "SequentialHead": self._sequential.append(module) return self
[docs] def get_config_dict(self) -> Dict[str, Any]: """Constructs savable params dict Returns: Serializable parameters for __init__ of the Module """ return { "output_size": self._output_size, }
[docs] def transform(self, input_vectors: torch.Tensor) -> torch.Tensor: return input_vectors
[docs] def save(self, output_path): torch.save(self._sequential, os.path.join(output_path, "weights.bin")) with open(os.path.join(output_path, "config.json"), "w") as f_out: json.dump(self.get_config_dict(), f_out, indent=2)
[docs] @classmethod def load(cls, input_path: str) -> "EncoderHead": with open(os.path.join(input_path, "config.json")) as f_in: config = json.load(f_in) sequential = torch.load( os.path.join(input_path, "weights.bin"), map_location="cpu" ) model = cls(*sequential, **config) return model
def __getitem__(self, idx) -> Union[nn.Sequential, nn.Module]: return self._sequential[idx] def __delitem__(self, idx: Union[slice, int]) -> None: return self._sequential.__delitem(idx) def __setitem__(self, idx: int, module: nn.Module) -> None: return self._sequential.__setitem__(idx, module) def __len__(self) -> int: return self._sequential.__len__() def __dir__(self): return self._sequential.__dir__() def __iter__(self) -> Iterator[nn.Module]: return self._sequential.__iter__()

Qdrant

Learn more about Qdrant vector search project and ecosystem

Discover Qdrant

Similarity Learning

Explore practical problem solving with Similarity Learning

Learn Similarity Learning

Community

Find people dealing with similar problems and get answers to your questions

Join Community